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1 Pressure Splitting

The total pressure can be split into its hydrostatic and hydrodynamic parts,
as in

p = ph + q , (1)

where ph is the hydrostatic part associated with barotropic and baroclinic
forces and q is the hydrodynamic part associated with pressure changes arising
from velocity fluctuations. Accordingly, we can write the hydrostatic part of
the pressure as that which solves the hydrostatic equation

∂ph
∂z

= −(ρ0 + ρ)g , (2)

where ρ0 is some spatially and temporally constant reference density and ρ
contains the perturbation and background densities such that ρ = ρ̄(z) +
ρ′(x, y, z, t). Vertical integration of (2) from some depth z to the free surface
h yields

p(z) = ps + ρ0g(h+ r − z) , (3)

where ps corresponds to the free surface pressure and r is the hydrostatic
pressure arising from the varying density ρ such that

r =

∫ h

z

ρ

ρ0

dz . (4)

The gradient of the total pressure is then split into its barotropic, baroclinic,
and hydrodynamic parts, respectively, as in

∇p = ρ0g∇(h+ r) +∇q , (5)

where ps is assumed constant.
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2 Rigid Lid Algorithm

Writing the pressure as in equation (5) sets the stage for a three level modeling
heirarchy, beginning with a computation of the full nonhydrostatic pressure,
down to a hydrostatic model. Beginning with the full nonhydrostatic model,
the discretized Boussinesq equations can be written with a time-centered pres-
sure projection type method [1] where the predictor velocity field is determined
with

u∗ − un

∆t
= S

n+ 1
2

H

w∗ − wn

∆t
= S

n+ 1
2

V − ρn+ 1
2

ρ0

g , (6)

and corrected with the total pressure, which consists of the hydrostatic and
hydrodynamic pressures, as in

un+1 − u∗

∆t
= − 1

ρ0

∇p̃n+1

wn+1 − w∗

∆t
= − 1

ρ0

∂p̃n+1

∂z
. (7)

All the non-buoyancy and non-pressure terms have been lumped into the right
hand side in S = (SH, SV ). Here, the velocity components are split into their
horizontal and vertical parts such that the horizontal velocity vector is given
by u = ûı + v̂, and the gradient operator represents ∇ = ı̂ ∂

∂x
+ ̂ ∂

∂y
. By

enforcing continuity at the n+ 1 time step such that

∇ · un+1 +
∂wn+1

∂z
= 0 , (8)

we can derive a Poisson equation for the total pressure p̃n+1 in terms of the
divergent velocity field (u∗, w∗) by imposing condition (8) on equations (7) to
obtain

∇2p̃n+1 +
∂2p̃n+1

∂z2
=

1

∆t
(∇ · u∗ +

∂w∗

∂z
) . (9)

In actuality this pressure p̃n+1 is not the real pressure, but rather is only a
first order in time approximation to pn+1 [2]. Its sole purpose is to impose
continuity at time step n + 1. Methods of computing the actual pressure
can be found in [1], but in general the real pressure is rarely needed unless
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hydrodynamic forces are of interest in the calculation. The evolution of the
density field is computed with transport equations for salinity and temperature
and a suitable equation of state for density, ρ = ρ(s, T ). The free surface
dynamics are computed with a kinematic free surface boundary condition of
the form

∂h

∂t
+ u · ∇h = w|z=h , (10)

the details of which can be found in [3]. In that work the free surface dy-
namics are computed explicitly with a higher order time stepping scheme.
Equations (6) - (10) constitute a full nonhydrostatic algorithm for geophysical
flows. Its main drawback is the Courant condition associated with the explicit
calculation of free surface waves, which imposes a severe time step stability
restriction.

3 Quasihydrostatic Algorithm

A split nonhydrostatic algorithm, such as that derived by Casulli [4], alleviates
the stability limitation associated with fast free surface gravity waves. This
is done by using the decomposition (3) in the predictor step (6) so that the
predicted horizontal velocity field is forced by the barotropic and baroclinic
pressures:

u∗ − un

∆t
= S

n+ 1
2

H′ − g∇[θhn+1 + (1− θ)hn]− g∇rn+ 1
2 ]

w∗ − wn

∆t
= S

n+ 1
2

V , (11)

where we have discretized hn+ 1
2 with a theta method such that hn+ 1

2 = θhn+1+
(1−θ)hn. This velocity field is then corrected with the hydrodynamic pressure,
as in

un+1 − u∗

∆t
= − 1

ρ0

∇q̃n+1

wn+1 − w∗

∆t
= − 1

ρ0

∂q̃n+1

∂z
, (12)

where again, q̃n+1 is a first order in time approximation to the actual hydrody-
namic pressure qn+1. However, ∇q̃n+1 is approximately an order of magnitude
smaller than ∇p̃n+1 and indeed ∇q̃n+1 ≈ 0 over all hydrostatic regions of the
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flow. The continuity equation (8) is integrated over the depth to obtain the
depth-averaged continuity equation which is exact and, with the use of the
kinematic boundary condition (10), becomes

∂h

∂t
+∇ ·

∫ h

−d
u dz = 0 . (13)

Equation (13) is discretized with a theta-method such that the free surface is
computed at the next time step with

hn+1 − hn

∆t
+ θ∇ ·

∫ hn

−d
u∗ dz + (1− θ)∇ ·

∫ hn

−d
un dz = 0 . (14)

An implicit equation for the free surface at time step n + 1 can be obtained
through a subsitution of u∗ from equations (11) into equation (14). The new
free surface can then be found and the predicted velocity fields are obtained
through the use of equations (11). Continuity is enforced through a corrector
step (12) after solving for the hydrodynamic pressure with

∇2q̃n+1 +
∂2q̃n+1

∂z2
=

1

∆t
(∇ · u∗ +

∂w∗

∂z
) . (15)

The drawbacks to this method are that it requires the solution of two el-
liptic equations, namely, the 2-D free surface equation for hn+1 and the 3-D
hydrodynamic pressure equation for q̃n+1. But since the hydrodynamic pres-
sure gradient ∇q̃ is smaller by an order of magnitude than the total pressure
gradient ∇p̃, the solution of the 3-D poisson equation for q̃ is much cheaper
than it is for p̃. Moreover, gains associated with eliminating the gravity wave
stability condition outweigh the increased computational cost of a second el-
liptic equation.

4 Hydrostatic Algorithm

A hydrostatic solution is obtained through the use of equation (11) after solv-
ing for the free surface implicitly with the use of equation (14). Now, however,
the velocities are not corrected with the use of equation (12). Instead, nonhy-
drostatic pressure effects are neglected and the new velocity field is obtained
with the use of the continuity equation, as in

un+1 = u∗ , wn+1 = −
∫ z

−d
∇ · un+1 dz . (16)
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The hydrostatic algorithm eliminates the need to solve the 3-D elliptic equation
for the nonhydrostatic pressure, and hence is very attractive when solving flows
under strong hydrostatic balance. It represents an equivalent algorithm to the
POM, except that here we solve for the free surface dynamics implicitly and
advance the baroclinic and barotropic modes with the same time step.

5 Numerical Comparison

Figure (1) depicts the failure of the hydrostatic model to depict the overturning
billows resulting from a Kelvin-Helmholtz instability in a lock exchange flow.
These flows were initialized with a hyperbolic tangent horizontal salinity profile
with a salinity difference of 4.28 ppt and the heavier fluid to the left of center.
While the hydrostatic model correctly depicts the position of the front, it is
incapable of capturing the instability that generates the overturning waves.
Instead, the hydrostatic model smooths out the front and generates short
horizontal waves at the interface. This indicates that a hydrostatic model
would not be able to capture overturning mechanisms that lead to a cascade
to higher frequencies regardless of how well resolved it was. While not all
energy transport to higher modes results from internal wave overturning, this
example presents compelling motivation to use a nonhydrostatic model, as it
points out a severe limitation that can result from using a hydrostatic code.
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Figure 1: Comparison of the nonhydrostatic and hydrostatic solutions to the lock exchange
problem 8 seconds after release of the lock. The shear instability that results in the Kelvin-
Helmholtz billows is highly nonhydrostatic, and as a result no waves form for the hydrostatic
case.


